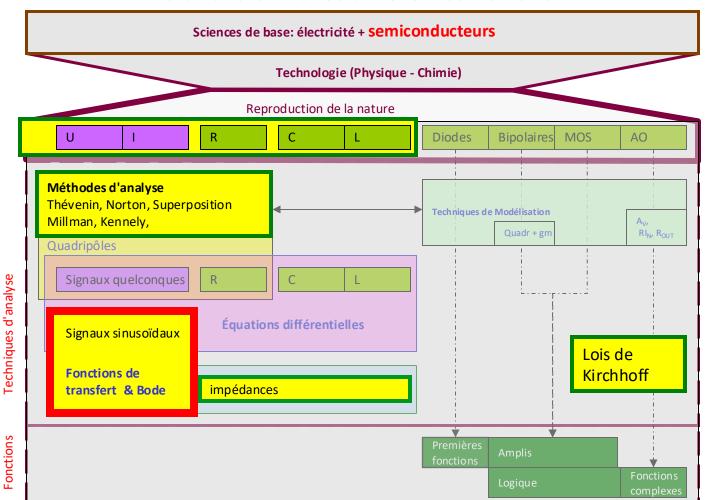
Relations entre les différentes notions



Objectifs de la séance

Rappel : différence essentielle entre diviseur de tension résistif et fonction de transfert

Écriture des fonctions de transfert avec combinaison de termes du premier ordre (Forme canonique)

Cinq termes du premier ordre

$$\underline{H}(j\omega) = K \cdot \frac{j\frac{\omega}{\omega_{Z1}} \cdot \left(1 + j\frac{\omega}{\omega_{Z2}}\right) \cdot \left(1 + j\frac{\omega}{\omega_{Z3}}\right) \dots \left(1 + j\frac{\omega}{\omega_{Zk}}\right)}{j\frac{\omega}{\omega_{P1}} \cdot \left(1 + j\frac{\omega}{\omega_{P2}}\right) \cdot \left(1 + j\frac{\omega}{\omega_{P3}}\right) \dots \left(1 + j\frac{\omega}{\omega_{Pl}}\right)}$$

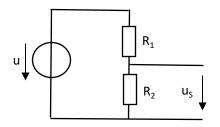
notation libre, mais doit permettre de différencier les pulsations

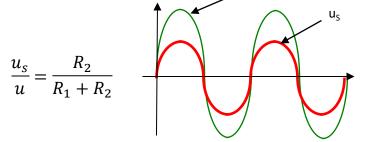
• **K** est une constante, ω_{zi} (i=1,k) zéro, ω_{pi} (i=1,l) pôle

Dessiner le module et l'argument de la fonction de transfert :

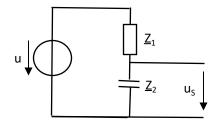
- Le dessin du module $|\underline{H}(j\omega)|$ exprimé en **dB** (décibels) : **échelle linéaire**.
- Le dessin de l'argument $Arg(\underline{H}(j\omega))$ exprimé en radians ou degrés : échelle linéaire
- Dans les deux cas, l'axe des pulsations est représenté sur une échelle logarithmique.

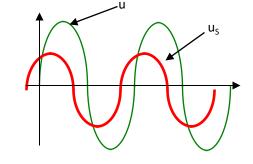
Rappel différence essentielle entre R et Z



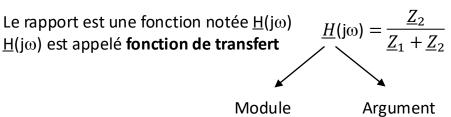


Le rapport est une valeur





$$\frac{\underline{u}_s}{\underline{u}} = \frac{\underline{Z}_2}{\underline{Z}_1 + \underline{Z}_2}$$



Conséquence pour représenter des produits de termes de base

- 1. Les fonctions de transfert s'expriment à partir d'un produit de termes de bases
- 2. Exploitation d'une échelle logarithmique pour l'axe des **modules** : Log(A.B) = Log (A) + Log (B)
 - Si A et B sont complexes : |A.B| = |A|.|B| et Log(|A.B|) = Log |A| + Log |B|
- 3. Quels sont les termes de bases du premier ordre et pourquoi les modules calculés en dB?

$$|K|_{dB} = 20.\log(K)$$

$$\left|j\frac{\omega}{\omega_{Z1}}\right|_{dB} = 20.\log\left|j\frac{\omega}{\omega_{Z1}}\right| = 20.\log\left(\frac{\omega}{\omega_{Z1}}\right)$$

$$\left|1+j\frac{\omega}{\omega_{Z2}}\right|_{dB} = 20.\log\left|1+j\frac{\omega}{\omega_{Z2}}\right| = 20.\log\sqrt{1+\left(\frac{\omega}{\omega_{Z2}}\right)^2}$$

$$\frac{1}{\left|j\frac{\omega}{\omega}\right|} = 20.\log\frac{1}{\left|j\frac{\omega}{\omega}\right|} = 20.\log\frac{1}{\left(\frac{\omega}{\omega_{P1}}\right)} = -20.\log\left(\frac{\omega}{\omega_{P1}}\right)$$

$$\begin{vmatrix} P_2 \\ \overline{P_1} \end{vmatrix}_{dB} = 10. \log \left(\frac{P_2}{P_1} \right)$$

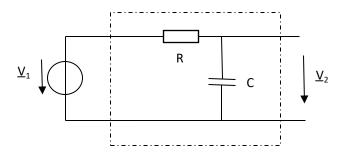
$$10. \log \left(\frac{U_2^2 / R}{U_1^2 / R} \right) = 10. \log \left(\frac{U_2^2}{U_1^2} \right) = 10. \log \left(\frac{U_2}{U_1} \right)^2$$

$$\begin{vmatrix} \underline{U_2} \\ \overline{U_1} \end{vmatrix}_{dB} = \mathbf{20}. \log \left(\frac{U_2}{U_1} \right)$$

log en base 10

$$\frac{1}{\left|1+j\frac{\omega}{\omega_{P2}}\right|_{dB}} = 20.\log\frac{1}{\left|1+j\frac{\omega}{\omega_{P2}}\right|} = 20.\log\frac{1}{\sqrt{1+\left(\frac{\omega}{\omega_{p2}}\right)^2}} = -20.\log\sqrt{1+\left(\frac{\omega}{\omega_{p2}}\right)^2}$$

L'exemple le plus simple: Réponse en fréquence du circuit "passe-bas"



$$\underline{H}(j\omega) = \frac{\underline{V}_2}{\underline{V}_1} = \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} = \frac{1}{1 + j\omega RC} = \frac{1}{1 + j\frac{\omega}{\omega_0}} \quad \text{Avec } \omega_0 = 1/RC = 1/\tau$$

Module:

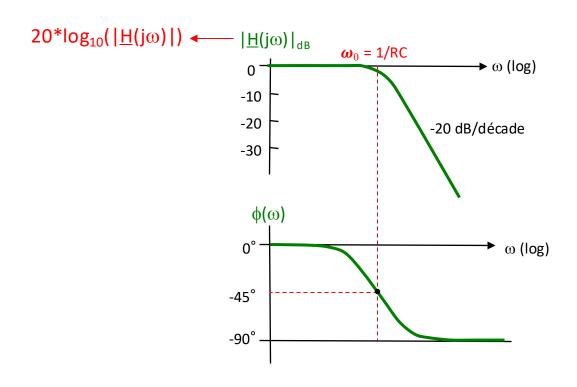
$$\left| \underline{H}(j\omega) \right| = \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_0}\right)^2}}$$

Argument:

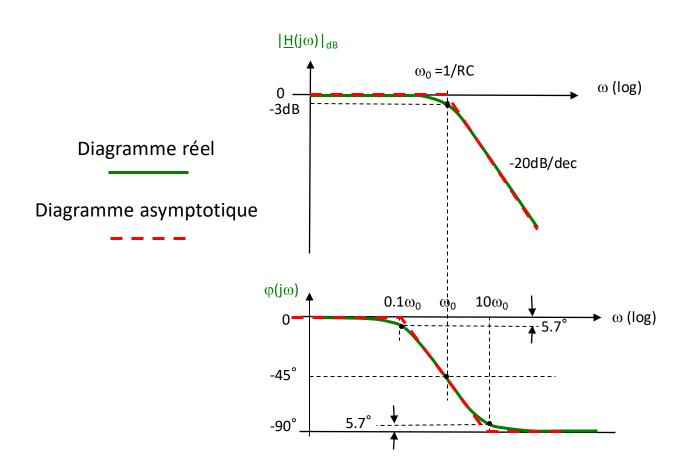
$$\operatorname{Arg}\left(\underline{H}(j\omega)\right) = -\operatorname{arctg}\frac{\omega}{\omega_0}$$

Réponse en fréquence du filtre passe-bas

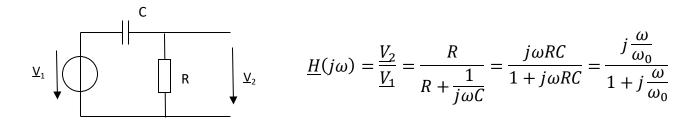
Recherche des asymptotes et cas particulier



Approximation asymptotique



Circuit RC passe-haut



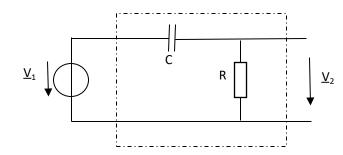
Module:
$$\left| \underline{\underline{H}}(j\omega) \right| = \frac{\frac{\omega}{\omega_0}}{\sqrt{1 + \left(\frac{\omega}{\omega_0}\right)^2}}$$
 Argument: $\operatorname{Arg}\left(\underline{\underline{H}}(j\omega)\right) = \frac{\pi}{2} - \operatorname{arctg}\frac{\omega}{\omega_0}$

Autre représentation que l'on trouve dans la littérature (difficile à exploiter)

Module:
$$\left| \underline{H}(j\omega) \right| = \frac{1}{\sqrt{1 + \left(\frac{\omega_0}{\omega} \right)^2}}$$

Argument: $\operatorname{Arg}\left(\underline{H}(j\omega)\right) = \operatorname{arct} g \frac{\omega_0}{\omega}$

Réponse en fréquence asymptotique du filtre passe-haut



Asymptotes
$$\begin{cases} 1/\operatorname{pour} \omega << \omega_0 & \underline{H}(j\omega) = j\frac{\omega}{\omega_0} \\ 2/\operatorname{pour} \omega >> \omega_0 & \underline{H}(j\omega) = 1 \end{cases}$$

Cas particulier 3/ pour
$$\omega = \omega_0$$
 $\underline{H}(j\omega) = \frac{j}{1+j}$

$$\left|\underline{H}(j\omega)\right| = \frac{1}{\sqrt{2}}, \quad \operatorname{Arg}\left(\underline{H}(j\omega)\right) = 45^{\circ}$$

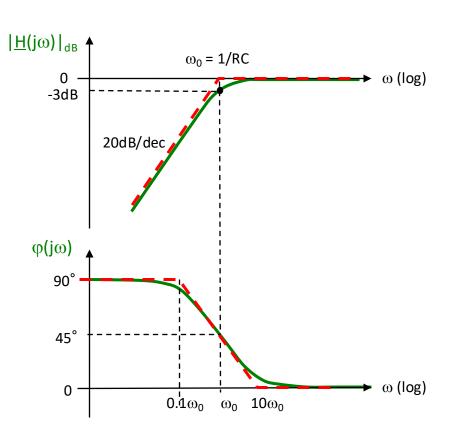


Diagramme de Bode - Module

Propriété : Le module d'un produit est égal au produit des modules, or, le log d'un produit est égal à une somme de log Si $\underline{H}(j\omega) = \underline{H}_1(j\omega) \cdot \underline{H}_2(j\omega)$ Alors $|\underline{H}(j\omega)|_{dB} = |\underline{H}_1(j\omega)|_{dB} + |\underline{H}_2(j\omega)|_{dB}$

D'où, l'intérêt de mettre une fonction de transfert H(jω) sous la forme:

$$\underline{H}(j\omega) = K \cdot \frac{j\frac{\omega}{\omega_{Z1}} \cdot \left(1 + j\frac{\omega}{\omega_{Z2}}\right) \cdot \left(1 + j\frac{\omega}{\omega_{Z3}}\right) \dots \left(1 + j\frac{\omega}{\omega_{Zk}}\right)}{j\frac{\omega}{\omega_{P1}} \cdot \left(1 + j\frac{\omega}{\omega_{P2}}\right) \cdot \left(1 + j\frac{\omega}{\omega_{P3}}\right) \dots \left(1 + j\frac{\omega}{\omega_{Pl}}\right)}$$

Son module exprimé en dB s'exprime comme une somme de modules élémentaires exprimés eux aussi en dB:

$$\left|\underline{H}(j\omega)\right|_{dB} = |K|_{dB} + \left|j\frac{\omega}{\omega_{Z1}}\right|_{dB} + \left|1+j\frac{\omega}{\omega_{Z2}}\right|_{dB} + \dots + \left|1+j\frac{\omega}{\omega_{Zl}}\right|_{dB} + \left|\frac{1}{j\frac{\omega}{\omega_{P1}}}\right|_{dB} + \dots + \left|\frac{1}{1+j\frac{\omega}{\omega_{Pl}}}\right|_{dB}$$

Diagramme de Bode - module de quelques fonctions élémentaires [1]

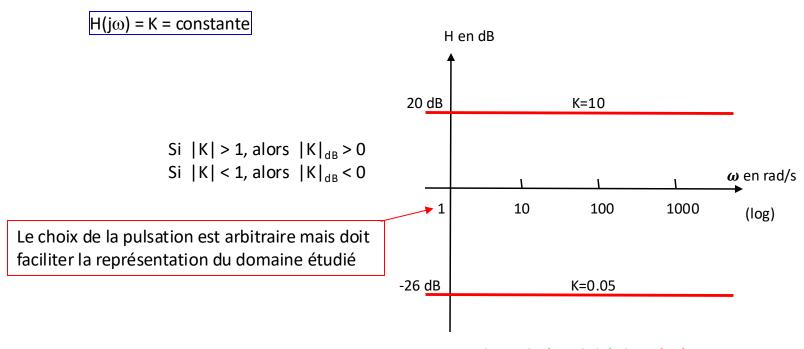


Diagramme de Bode (module) de $\underline{H}(j\omega) = K$

Diagramme de Bode - module

$$\left| \underline{H}(j\omega) \right|_{dB} = 20.\log \left| \underline{H}(j\omega) \right|$$

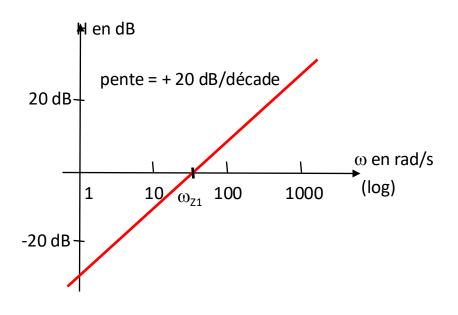
Exemples de calcul pour quelques constantes:

$ \underline{H}(j\omega) = 1$	$ \underline{H}(j\omega) _{dB} = 0 dB$
$ \underline{H}(j\omega) = 10$	$ \underline{H}(j\omega) _{dB} = 20 \text{ dB}$
$ \underline{H}(j\omega) = 100$	$ \underline{H}(j\omega) _{dB} = 40 \text{ dB}$
$ \underline{H}(j\omega) = 1000$	$ \underline{H}(j\omega) _{dB} = 60 \text{ dB}$
$ \underline{H}(j\omega) = 0.1$	$ \underline{H}(j\omega) _{dB} = -20 \text{ dB}$
$ \underline{H}(j\omega) = 0.01$	$ \underline{H}(j\omega) _{dB} = -40 \text{ dB}$
$ \underline{H}(j\omega) = 0.001$	$ \underline{H}(j\omega) _{dB} = -60 \text{ dB}$
$ \underline{H}(j\omega) = 2$	$ \underline{H}(j\omega) _{dB} = 6 dB$
<u>H</u> (jω) = 0.5	$ \underline{H}(j\omega) _{dB} = -6 \text{ dB}$

Diagramme de Bode - module de quelques fonctions élémentaires [2]

$$\underline{H}(j\omega) = j\frac{\omega}{\omega_{Z1}}$$

$$\underline{H}(j\omega) = \frac{1}{j\frac{\omega}{\omega_{P1}}}$$



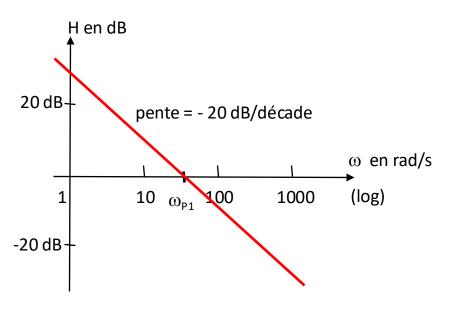


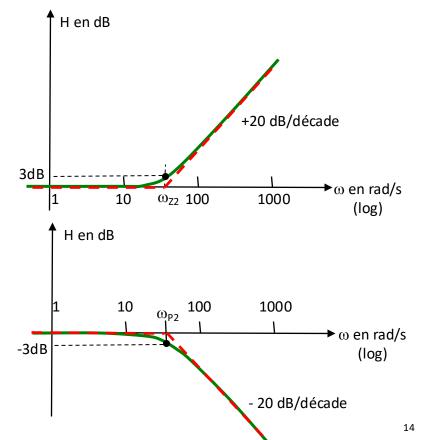
Diagramme de Bode - module de quelques fonctions élémentaires [3]

$$\underline{H}(j\omega) = 1 + j\frac{\omega}{\omega_{Z2}} et |\underline{H}(j\omega)| = \sqrt{1 + \left(\frac{\omega}{\omega_{Z2}}\right)^2}$$

- Comportement à basses fréquences identique à une constante de valeur 1 soit | H| = 0 dB
- Comportement à hautes fréquences identique au terme $j\frac{\omega}{\omega_{Z2}}$ soit |H| = 20 dB/dec

$$\underline{\underline{H}}(j\omega) = \frac{1}{1 + j\frac{\omega}{\omega_{P2}}} et |\underline{\underline{H}}(j\omega)| = \frac{1}{1 + \left(\frac{\omega}{\omega_{P2}}\right)^2}$$

- Comportement à basses fréquences identique à une constante de valeur 1 soit |H| = 0 dB
- Comportement à hautes fréquences identique au terme $\frac{1}{j\frac{\omega}{\omega_P}}$ soit |H| = -20 dB/dec



Exemple de diagramme de Bode - module

$$\underline{H}(j\omega) = \frac{j\frac{\omega}{\omega_2}}{\left(1 + j\frac{\omega}{\omega_1}\right) \cdot \left(1 + j\frac{\omega}{\omega_2}\right)}$$

Avec $\omega_2 = 10^2 \text{ rad/s}$

et

 ω_1 = 10³ rad/s

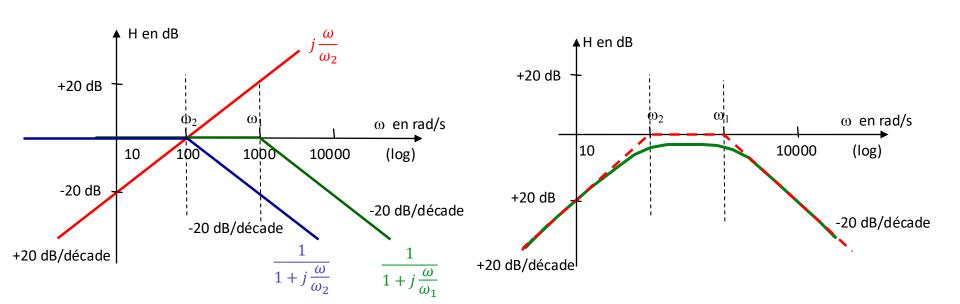


Diagramme de Bode - argument ou phase

La phase $Arg(\underline{H}(j\omega))$ est exprimée en radians à 2π près

Propriété : l'argument d'un produit est égal à la somme des arguments Si $\underline{H}(j\omega) = \underline{H}_1(j\omega)$. $\underline{H}_2(j\omega)$ Alors $\underline{Arg}(\underline{H}(j\omega)) = \underline{Arg}(\underline{H}_1(j\omega)) + \underline{Arg}(\underline{H}_2(j\omega))$

$$\underline{H}(j\omega) = K. \frac{j\frac{\omega}{\omega_{Z1}}.\left(1+j\frac{\omega}{\omega_{Z2}}\right).\left(1+j\frac{\omega}{\omega_{Z3}}\right)...\left(1+j\frac{\omega}{\omega_{Zk}}\right)}{j\frac{\omega}{\omega_{P1}}.\left(1+j\frac{\omega}{\omega_{P2}}\right).\left(1+j\frac{\omega}{\omega_{P3}}\right)...\left(1+j\frac{\omega}{\omega_{Pl}}\right)}$$

Son argument s'exprime comme une somme (différence) d'arguments élémentaires:

$$\begin{split} Arg\left(\underline{H}(j\omega)\right) &= Arg(K) + Arg\left(j\frac{\omega}{\omega_{Z1}}\right) + Arg\left(1 + j\frac{\omega}{\omega_{Z2}}\right) + \cdots Arg\left(1 + j\frac{\omega}{\omega_{Zk}}\right) \\ &- Arg\left(j\frac{\omega}{\omega_{P1}}\right) - Arg\left(1 + j\frac{\omega}{\omega_{P2}}\right) \ldots - Arg\left(1 + j\frac{\omega}{\omega_{Pl}}\right) \end{split}$$

Diagramme de Bode - phase de quelques fonctions élémentaires [1]

$$\underline{H}(j\omega) = K = constante$$

Arg(K) = 0 pour K > 0
Arg(K) =
$$\pi$$
 ou 180°
pour K < 0

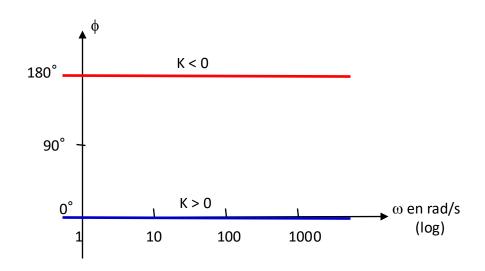
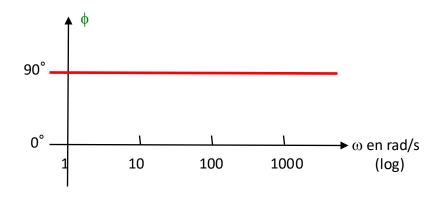


Diagramme de Bode (phase) de $\underline{H}(j\omega) = K$

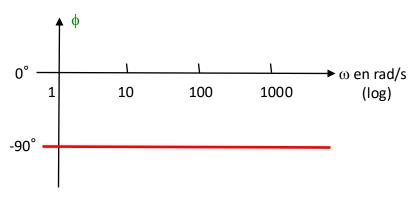
Diagramme de Bode - phase de quelques fonctions élémentaires [2]

$$\underline{H}(j\omega) = j\frac{\omega}{\omega_{Z1}}$$

$$\underline{H}(j\omega) = \frac{1}{j\frac{\omega}{\omega_{P1}}}$$



$$Arg(\underline{H}(j\omega)) = \pi/2$$
 ou 90°

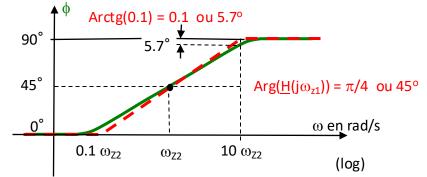


$$Arg(\underline{H}(j\omega)) = -\pi/2 \text{ ou } -90^{\circ}$$

Diagramme de Bode - phase de quelques fonctions élémentaires [3]

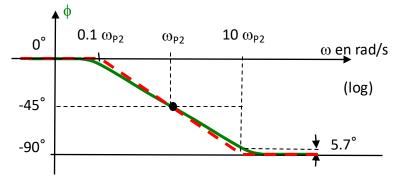
$$\underline{H}(j\omega) = 1 + j\frac{\omega}{\omega_{Z2}}$$

- Comportement à basses fréquences identique à une constante de valeur 1 soit φ=0
- Comportement à hautes fréquences identique au terme $j \frac{\omega}{\omega_{Z2}}$ soit $\phi = \pi/2$



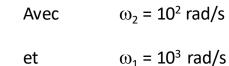
$$\underline{H}(j\omega) = \frac{1}{1 + j\frac{\omega}{\omega_{P2}}}$$

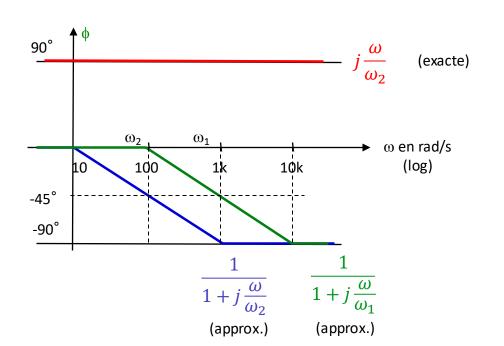
- Comportement à basses fréquences identique à une constante de valeur 1 soit \$\phi=0\$
- Comportement à hautes fréquences identique au terme

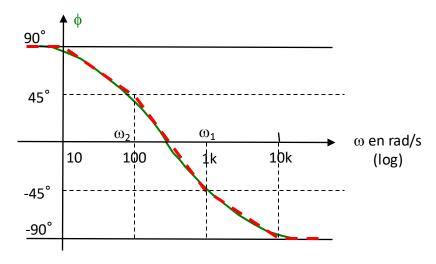


Exemple

$$\underline{H}(j\omega) = \frac{j\frac{\omega}{\omega_2}}{\left(1 + j\frac{\omega}{\omega_1}\right) \cdot \left(1 + j\frac{\omega}{\omega_2}\right)}$$







Exemple de feuille lin - log

